

CCD47-20 Back Illuminated AIMO Frame-Transfer High Performance CCD Sensor

FEATURES

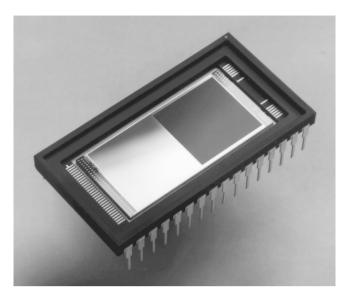
- 1024 by 1024 1:1 image format
- Image area 13.3 x13.3 mm
- Back Illuminated format
- Frame transfer operation
- 13 μm square pixels
- Symmetrical anti-static gate protection
- Very low noise output amplifiers
- Gated dump drain on output register
- 100% active area
- Advanced Inverted Mode Operation (AIMO)

APPLICATIONS

- Spectroscopy
- Scientific Imaging
- Medical Imaging

INTRODUCTION

This version of the CCD47 family of CCD sensors has frame transfer architecture. Back illumination technology, in combination with extremely low noise amplifiers, makes the device well suited to the most demanding scientific applications.


This device has a single serial output register. Separate charge detection circuits are incorporated at each end of the register, which is split so that a line of charge can be transferred to either output, or split between the two.

The register is provided with a drain and control gate along the outer edge of the channel for charge dump purposes.

The sensor is made using Teledyne e2v Advanced Inverted Mode process to minimise dark current, allowing the device to be operated with extended integration periods and minimal cooling.

Other variants of the CCD47-20 available are front illuminated format and non-inverted mode.

Designers are advised to consult Teledyne e2v should they be considering using CCD sensors in abnormal environments or if they require customised packaging.

TYPICAL PERFORMANCE

Maximum readout frequency	5 MHz
Output amplifier responsivity	4.5 μV/e ⁻
Peak signal	100 ke ⁻ /pixel
Dynamic range (at 20 kHz)	~50,000:1
Spectral range	.200 – 1100 nm
Readout noise (at 20 kHz)	

GENERAL DATA

Format

Image area	
(V)1024	
Pixel size13 x 13 μm	1
Storage area13.3 x13.3 mm	
Pixels (H)1024	
(V)1033	,
Additional pixels are provided in the image area for dark reference and over-scanning purposes.	
Number of output amplifiers	

Package

Package size	22.7 x 42.0 mm
Number of pins	32
Inter-pin spacing	2.54 mm
Window material	removable glass
Package type	ceramic DIL array

Whilst Teledyne e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. Teledyne e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.

Teledyne e2v (UK) Limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU United Kingdom Teledyne e2v (UK) Ltd. is a Teledyne Technologies company. Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 Contact Teledyne e2v by e-mail: Enquiries@Teledyne-e2v.com or visit www.teledyne-e2v.com for global sales and operations centres.

© Teledyne e2v (UK) Limited 2017 A1A-100041 Version 9, December 2017

Template: DF764388A Ver 16

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	-	100k	-	e ⁻ /pixel
Peak output voltage (no binning)	-	450	-	mV
Dark signal at 293 K (see notes 2 and 3)	-	250	500	e ⁻ /pixel/s
Dynamic range (see note 4)	-	50,000:1	-	
Charge transfer efficiency (see note 5): parallel serial		99.9999 99.9993	-	% %
Output amplifier responsivity (see note 3)	3.0	4.5	6.0	μV/e ⁻
Readout noise at 253 K (see notes 3 and 6)	-	2.0	4.0	rms e ⁻ /pixel
Maximum readout frequency (see note 7)	-	5.0	-	MHz
Dark signal non-uniformity at 293 K (std. deviation) (see notes 3 and 8)	-	60	125	e ⁻ /pixel/s

Note: Register capacity is designed to have 4x the image peak charge storage. This is not factory tested.

SPECTRAL RESPONSE AT 253 K

	N	linimum Response (C			
Wavelength (nm)	Basic Midband Coated	Basic Broadband Coated	Basic Uncoated	Maximum Response Non-uniformity (1σ)	
350	15	25	10		%
400	40	55	25	3	%
500	85	75	55		%
650	85	75	50	3	%
900	25	25	25	5	%

ELECTRICAL INTERFACE CHARACTERISTICS

Electrode Capacitances (Measured at mid-clock level)

	Min	Typical	Max	
S∅/S∅ interphase	-	3.5	-	nF
IØ/IØ interphase	-	3.5	-	nF
IØ/SS and SØ/SS	-	4.5	-	nF
RØ/RØ interphase	-	40	-	pF
R∅/(SS + DG + OD)	-	60	-	pF
ØR/SS	-	10	-	pF
Output impedance at typical operating conditions	-	300	-	Ω

NOTES

- Signal level at which resolution begins to degrade. Not factory tested.
- Measured at 253 K with V_{SS} high, the equivalent at 293 K is then determined from:

$$Q_d/Qd_0 = 1.14 \times 10^6 T^3 e^{-9080/T}$$

where Q_d is the measured darks signal at temperature T and Q_{d0} is the dark signal at 293 K. Below 230 K, additional dark current components with a weaker temperature dependence may become significant.

- 3. Test carried out on all sensors.
- Dynamic range is the ratio of full-well capacity to readout noise measured at 253 K and 20 kHz readout frequency.
- CCD characterisation measurements made using charge generated by X-ray photons of known energy. Not factory tested.
- 6. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 20 $\,\mu s$ integration period.
- Readout at speeds in excess of 5 MHz into a 15 pF load can be achieved but performance to the parameters given cannot be guaranteed. Factory production test are performed at < 50 kHz only.
- 8. Measured at 253 K and scaled as per note 2. Measurement excludes white defects.

BLEMISH SPECIFICATION

Traps Pixels where charge is temporarily held.

Columns with a trap are counted if they have a capacity greater than 200 e^- at

253 K.

level of less than 80% of the local mean at a signal level of approximately half

full-well.

generation rate 125 times the specified maximum dark signal generation rate (measured between 243 and 293 K). The typical temperature dependence of white spot blemishes is the same as that of the average dark signal i.e.:

 $Q_d/Q_{d0} = 122T^3e^{-6400/T}$

White column A column which contains at least 21

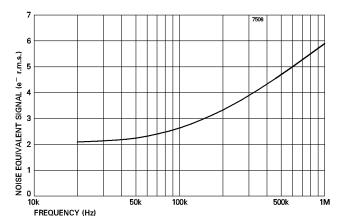
white defects.

Black column A column which contains at least 21

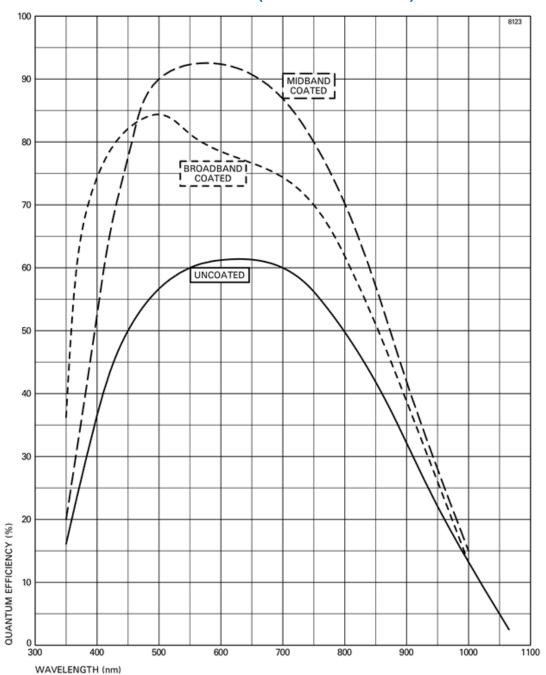
black defects.

GRADE	0	1	2
Column defects; black or slipped	0	2	6
white	0	0	2
Black spots	50	100	200
Traps >200 e ⁻	2	5	12
White spots	50	80	100

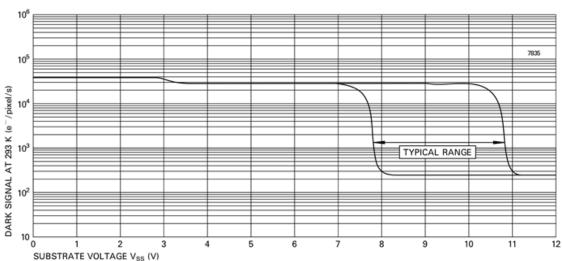
Grade 5

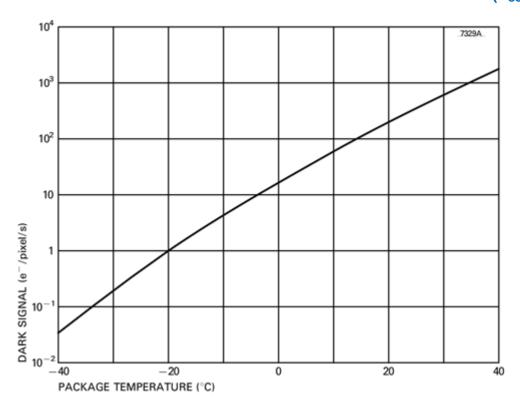

Devices which are fully functional, with image quality below that of grade 2, and which may not meet all other performance parameters.

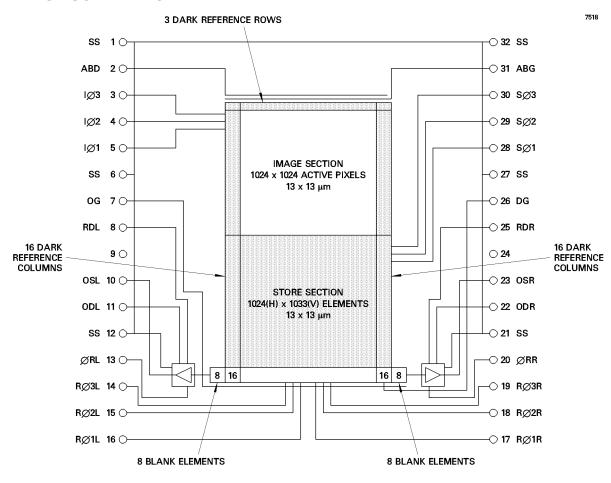
Note: The effect of temperature on defects is that traps will be observed less at higher temperatures but more may appear below 253 K. The amplitude of white spots and columns will decrease rapidly with temperature.


TYPICAL OUTPUT CIRCUIT NOISE

(Measured using clamp and sample)


 $V_{SS} = 9 \text{ V}, V_{RD} = 18 \text{ V}, V_{OD} = 29 \text{ V}$

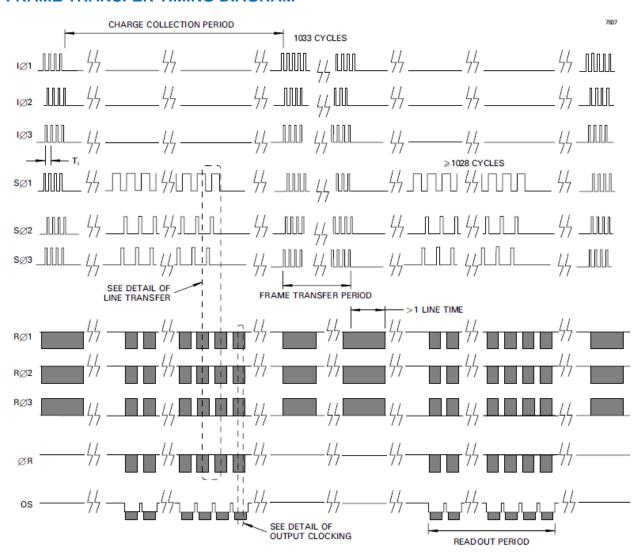

TYPICAL SPECTRAL RESPONSE (At 253K no window)


TYPICAL VARIATION OF DARK CURRENT WITH SUBSTRATE VOLTAGE

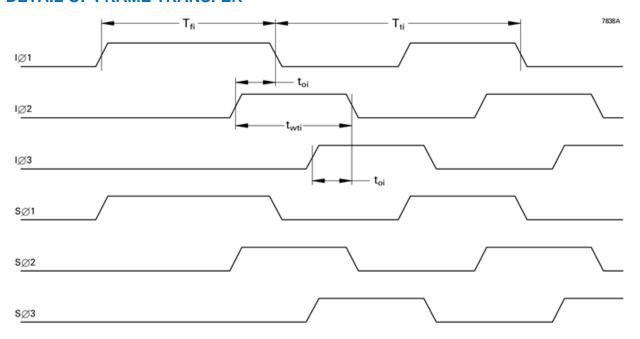
TYPICAL VARIATION OF DARK SIGNAL WITH TEMPERATURE ($V_{SS} = +9.5 \text{ V}$)

DEVICE SCHEMATIC

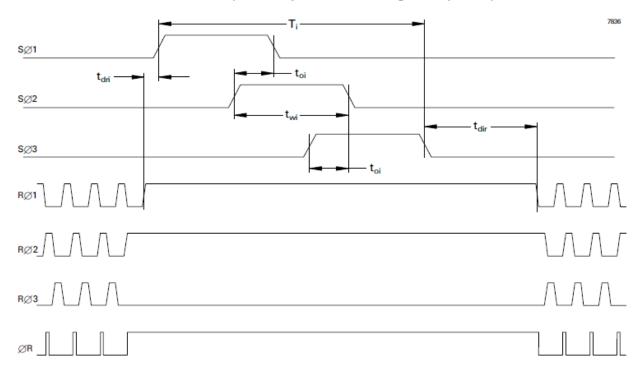
CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

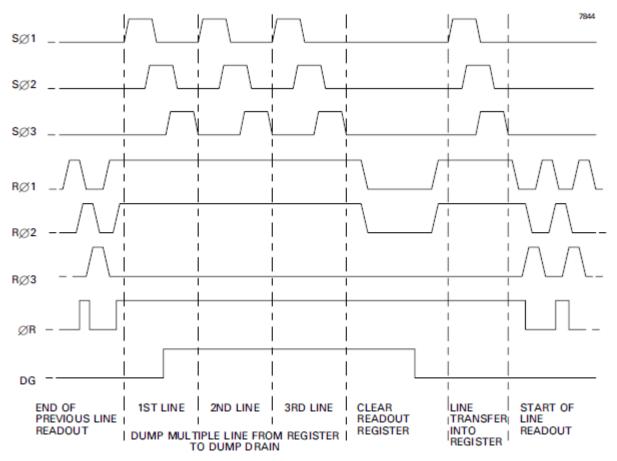

				SE AMPLITUD EVEL (V) (See i	MAXIMUM RATINGS	
PIN	REF	DESCRIPTION	Min	Typical	Max	with respect to V _{SS}
1	SS	Substrate	8	9.5	11	-
2	ABD	Anti-blooming drain		(see note 10)		−0.3 to +25 V
3	IØ3	Image area clock, phase 3	12	15	16	±20 V
4	IØ2	Image area clock, phase 2	12	15	16	±20 V
5	IØ1	Image area clock, phase 1	12	15	16	±20 V
6	SS	Substrate	8	9.5	11	-
7	OG	Output gate	1	3	5	±20 V
8	RDL	Reset transistor drain (left amplifier)	15	17	19	-0.3 to +25 V
9	-	No connection		-		-
10	OSL	Output transistor source (left amplifier)		see note 11		−0.3 to +25 V
11	ODL	Output transistor drain (left amplifier)	27	29	32	−0.3 to +35 V
12	SS	Substrate	8	9.5	11	-
13	ØRL	Output reset pulse (left amplifier)	8	12	15	±20 V
14	RØ3L	Output register clock phase 3 (left section)	8	10	15	±20 V
15	RØ2L	Output register clock phase 2 (left section)	8	10	15	±20 V
16	RØ1L	Output register clock phase 1 (left section)	8	10	15	±20 V
17	RØ1R	Output register clock phase 1 (right section)	8	10	15	±20 V
18	RØ2R	Output register clock phase 2 (right section)	8	10	15	±20 V
19	RØ3R	Output register clock phase 3 (right section)	8	10	15	±20 V
20	ØRR	Output reset pulse (right amplifier)	8	12	15	±20 V
21	SS	Substrate	0	9.5	11	-
22	ODR	Output transistor drain (right amplifier)	27	29	32	−0.3 to +35 V
23	OSR	Output transistor source (right amplifier)		see note 11		−0.3 to +25 V
24	-	No connection		-		-
25	RDR	Reset transistor drain (right amplifier)	15	17	19	−0.3 to +25 V
26	DG	Dump gate (see note 12)	-	0	-	±20 V
27	SS	Substrate	0	9.5	11	-
28	SØ1	Storage area clock, phase 1	12	15	16	±20 V
29	SØ2	Storage area clock, phase 2	12	15	16	±20 V
30	SØ3	Storage area clock, phase 3	12	15	16	±20 V
31	ABG	Anti-blooming gate	0	0	5	±20 V
32	SS	Substrate	0	9.5	11	-

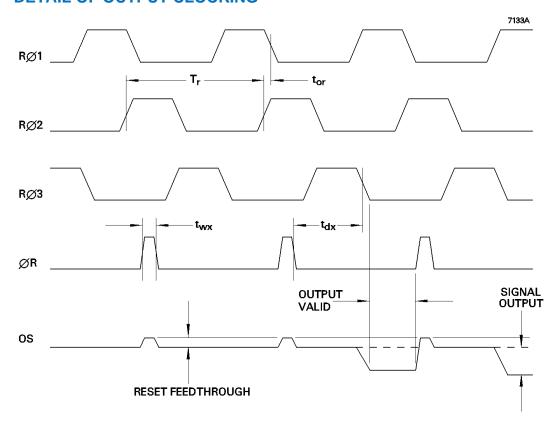
Maximum voltages between pairs of pins:

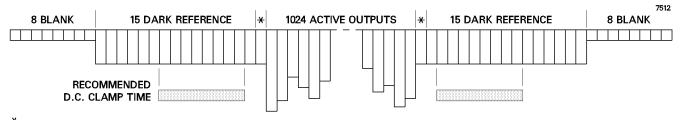

NOTES

- 9. Readout register clock pulse low levels +1 V; other clock low levels 0 ± 0.5 V.
- 10. Pixel drain anti-blooming is not incorporated, but bias is still necessary to avoid spurious charge injection. ABD can be tied to OD to reduce the number of voltage supplies if operating with substrate high, but the maximum rating with respect to Vss should be observed during the power on and off sequence, i.e. raise drains to mid-level, raise SS then raise drains to values shown. Performance is insensitive to the ABD bias in the range given.
- 11. 3 to 5 V below OD. Connect to ground using a 2 to 5 mA current source or appropriate load resistor (typically 5 to 10 kΩ).
- 12. Non-charge dumping level shown. For operation in charge dumping mode, DG should be pulsed to $12 \pm 2 \text{ V}$.
- 13. All devices will operate at the typical values given. However, some adjustment within the minimum to maximum range may be required to optimise performance for critical applications. It should be noted that conditions for optimum performance may differ from device to device.
- 14. With the R \varnothing connections shown, the device will operate through the right-hand output only. In order to operate from both outputs, R \varnothing 1(L) and R \varnothing 2(L) should be reversed.


FRAME TRANSFER TIMING DIAGRAM


DETAIL OF FRAME TRANSFER

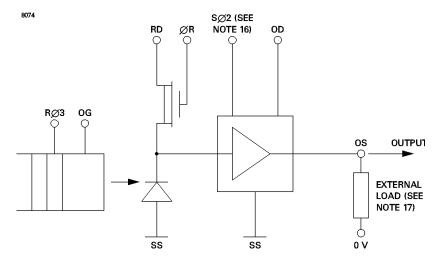

DETAIL OF LINE TRANSFER (For output from a single amplifier)


DETAIL OF VERTICAL LINE TRANSFER (Multiple line dump)

DETAIL OF OUTPUT CLOCKING

LINE OUTPUT FORMAT

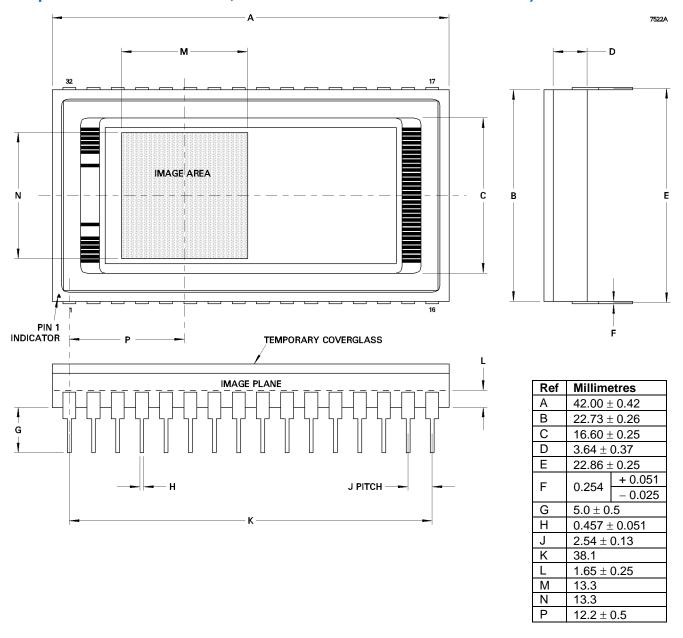
^{* =} Partially shielded transition elements


CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
T _{fi}	First frame transfer pulse width	100	150	see note 15	μS
T _{ti}	Frame Transfer clock period	7	10	see note 15	μS
t _{wti}	Frame transfer image clock pulse width	3.5	5	0.2T _{fi}	μS
T _i	Store clock period	50	100	see note 15	μS
t _{wi}	Image/store clock pulse width	25	50	see note 15	μS
t _{ri}	Image/store clock pulse rise time (10 to 90%)	0.1	5	0.2T _i	μS
t _{fi}	Image/store clock pulse fall time (10 to 90%)	t _{ri}	5	0.2Ti	μS
t _{oi}	Image/store clock pulse overlap	$(t_{ri} + t_{fi})/2$	5	0.2Ti	μS
t _{dir}	Delay time, SØ stop to RØ start	1	2	see note 15	μS
t _{dri}	Delay time, RØ stop to SØ start	1	1	see note 15	μS
T _r	Output register clock cycle period	200	1000	see note 15	ns
t _{rr}	Clock pulse rise time (10 to 90%)	50	$0.1T_{r}$	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	$0.1T_{r}$	0.3T _r	ns
t _{or}	Clock pulse overlap	20	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	30	$0.1T_{r}$	0.3T _r	ns
t_{rx}, t_{fx}	Reset pulse rise and fall times	0.2t _{wx}	0.5t _{rr}	0.1T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	30	0.5T _r	0.8T _r	ns

NOTES

15. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.


OUTPUT CIRCUIT

NOTES

- 16. The amplifier has a DC restoration circuit which is internally activated whenever SØ2 is high.
- 17. Not critical; can be a 3 to 5 mA constant current supply or an appropriate load resistor.

OUTLINES (All dimensions in millimetres; dimensions only verified on a sample basis not per manufactured sensor, dimensions without limits are nominal)

ORDERING INFORMATION

Non-standard options can include:

- Permanent window
- Alternative image area coatings

For further information on these and other options, contact Teledyne e2v.

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty. All gate electrodes are provided with internal protections circuits but not the other pins.

HIGH ENERGY RADIATION

Device parameters may begin to change if subject to an ionising radiation.

Users planning to use CCDs in a high radiation environment are advised to contact Teledyne e2v.

TEMPERATURE LIMITS

	Min	Typical	Max	
Non-operating	153	293	353	K
Operating	153	273	323	K

Operation or storage in humid conditions may give rise to ice on the sensor surface on cooling, causing irreversible damage.

Maximum device heating/cooling5 K/min