

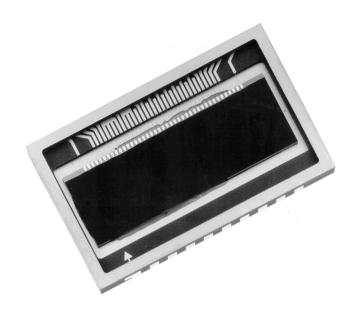
# CCD42-10 Back Illuminated High Performance AIMO CCD Sensor

#### **FEATURES**

- 2048 by 512 pixel format
- 13.5 μm square pixels
- Image area 27.6 x 6.9 mm
- Wide Dynamic Range
- Symmetrical anti-static gate protection
- Back Illuminated Format for Enhanced Quantum Efficiency
- 3 Standard Anti-Reflection Coatings
- Advance Inverted Mode Operation (AIMO)
- Dump gate on readout register
- · Zero Light Emitting Output Amplifier

#### **APPLICATIONS**

- Spectroscopy
- Scientific Imaging
- TDI Operation


## INTRODUCTION

This version of the CCD42 family of CCD sensors has full-frame architecture. Back illumination technology, in combination with an extremely low noise amplifier, make the device well suited to the most demanding applications, such as spectroscopy. To improve the sensitivity further, the CCD is manufactured without anti-blooming structures. This variant of the CCD42-10 operates in advanced inverted mode (AIMO) for use at Peltier temperatures. e2v technologies' AIMO structures give a 100 times reduction in dark current with minimum reduction in full-well capacity.

The output amplifier is designed to give excellent noise levels at low pixel rates, and can match the noise performance of most conventional scientific CCDs at pixel rates as high as 3 MHz.

The readout register has a gate controlled dump drain to allow fast dumping of unwanted data. The register is designed to accommodate four image pixels of charge, and a summing well capable of holding six image pixels is provided. The output amplifier has a feature enabling the responsivity to be reduced to allow the reading of such large charge packets.

Designers are advised to consult e2v should they be considering using CCD sensors in abnormal environments or if they require customised packaging.



## **TYPICAL PERFORMANCE**

## (Low noise mode)

| Pixel readout frequency             | 20 – 3000 kHz              |
|-------------------------------------|----------------------------|
| Output amplifier sensitivity        | 4.5 μV/e <sup>-</sup>      |
| Peak signal                         | 100 ke <sup>-</sup> /pixel |
| Dynamic range                       | 33,333:1                   |
| Spectral range                      | 200 – 1060 nm              |
| Readout noise<br>(at 233 K, 20 kHz) | 3 e <sup>-</sup> rms       |

## **GENERAL DATA**

#### **Format**

| Image area    | 27.6 x 6.9 mm                |
|---------------|------------------------------|
| Active pixels | 2048 (H)<br>515 (usable) (V) |
| Pixel size    | 13.5 x 13.5 µm               |

#### **Package**

| Package size      | 32.89 x 20.07 mm          |
|-------------------|---------------------------|
| Number of pins    | 20                        |
| Inter-pin spacing | 2.54 mm                   |
| Inter-row spacing | 15.24 mm                  |
| Window material   | Quartz or removable glass |

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond the set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.

e2v technologies (uk) limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU United Kingdom Holding Company: e2v technologies plc Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492

Contact e2v by e-mail: <a href="mailto:enquiries@e2v.com">enquiries@e2v.com</a> or visit <a href="mailto:www.e2v.com">www.e2v.com</a> for global sales and operations centres.

#### **PERFORMANCE**

|                                                                    |                                 |         | Min     | Typical | Max                     | Units                     | Note |
|--------------------------------------------------------------------|---------------------------------|---------|---------|---------|-------------------------|---------------------------|------|
| Peak charge storage                                                |                                 |         | 100k    |         | e <sup>-</sup> /pixel   | 1                         |      |
| Peak output voltage (unbin                                         | ned)                            |         |         | 450     |                         | mV                        |      |
| Dark signal at 293 K                                               |                                 |         |         | 250     | 500                     | e <sup>-</sup> /pixel/s   | 2    |
| Parallel                                                           |                                 | -       | 99.9999 | -       | %                       | 1 2                       |      |
| Charge transfer efficiency                                         |                                 | Serial  | -       | 99.9993 | -                       | %                         | 1, 3 |
| Output amplifier                                                   | Low noise mode High signal mode |         | 3.0     | 4.5     | 6.0                     | μV/e <sup>-</sup>         |      |
| sensitivity                                                        |                                 |         |         | 1.5     |                         |                           | 1    |
| Dandout naine at 252 K                                             | Low noise mode High signal mode |         |         | 3       | 4                       | rms e <sup>-</sup> /pixel | 4    |
| Readout noise at 253 K                                             |                                 |         |         | 6       |                         |                           | 4    |
| Readout frequency                                                  |                                 |         |         | 20      | 3000                    | kHz                       | 5    |
| Dark signal non-uniformity at 293 K (std. deviation)               |                                 |         | 60      | -       | e <sup>-</sup> /pixel/s | 1                         |      |
| Binned column dark signal non-uniformity at 293 K (std. deviation) |                                 |         | 7       | 15      | e <sup>-</sup> /pixel/s |                           |      |
| Output node capacity                                               | Low noise                       | e mode  |         | 1.5     |                         |                           |      |
| relative to image section                                          | High sign                       | al mode |         | 6.0     |                         |                           |      |

## **SPECTRAL RESPONSE**

|            | Minimum Response (QE) |                    |               |                     |                    | Paspansa                |      |   |
|------------|-----------------------|--------------------|---------------|---------------------|--------------------|-------------------------|------|---|
| Wavelength | Enhanced Process      |                    | Basic Process |                     |                    | Response Non-uniformity |      |   |
| (nm)       | Broadband<br>Coated   | Mid-band<br>Coated | UV Coated     | Broadband<br>Coated | Mid-band<br>Coated | Uncoated                | (1σ) |   |
| 300        | -                     | -                  | 45            | -                   | -                  | -                       | -    | % |
| 350        | 50                    | 25                 | 45            | 25                  | 15                 | 10                      | 5    | % |
| 400        | 80                    | 50                 | 55            | 55                  | 40                 | 25                      | 3    | % |
| 500        | 80                    | 85                 | 60            | 75                  | 85                 | 55                      | 3    | % |
| 650        | 72                    | 85                 | 60            | 72                  | 85                 | 50                      | 3    | % |
| 900        | 25                    | 25                 | 25            | 25                  | 25                 | 25                      | 5    | % |

## **ELECTRICAL INTERFACE CHARACTERISTICS**

## **Electrode Capacitances (Measured at mid-clock level)**

|                  | Min | Typical | Max |    |
|------------------|-----|---------|-----|----|
| IØ/IØ interphase | -   | 5       | -   | nF |
| R∅/R∅ interphase | -   | 80      | -   | pF |
| IØ/SS            | -   | 15      | -   | nF |
| R∅/SS            | -   | 150     | -   | pF |
| Output impedance | -   | 350     | -   | Ω  |

## **NOTES**

- 1. Not measured as production test.
- The typical average (background) dark signal at any temperature T (kelvin) between 230 K and 300 K is given by:

$$Q_d/Q_{d0} = 1.14 \times 10^6 T^3 e^{-9080/T}$$

where  $Q_{d0}$  is the dark signal at 293 K. Note that this is typical performance and some variation may be seen between devices. Below 230 K additional dark current components with a weaker temperature dependence may become significant.

- 3. CCD characterisation measurements made using charge generated by X-ray photons of known energy.
- Measured at OS with correlated double sampling at 20 kHz pixel rate in low noise mode.
- Readout above 3000 kHz can be achieved but performance to the parameters given cannot be guaranteed.

## **BLEMISH SPECIFICATION**

**Traps** Pixels where charge is temporarily held.

Traps are counted if they have a capacity

greater than 200 e-.

Black spots Are counted when they have a signal

level of less than 80% of the local mean

signal.

White spots Are counted when they have a

generation rate 100 times the specified maximum dark signal generation rate at 293 K (measured between 233 and 273 K). The typical temperature dependence of white spot blemishes is different from that of the average dark signal and is

given by:

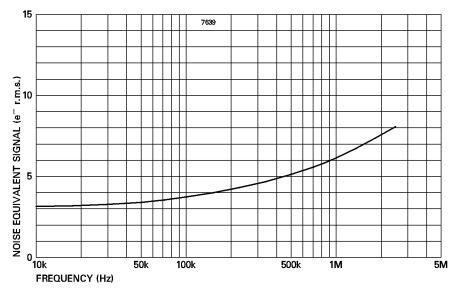
$$Q_d/Q_{d0} = 122T^3e^{-6400/T}$$

White column A column which contains at least 9 white

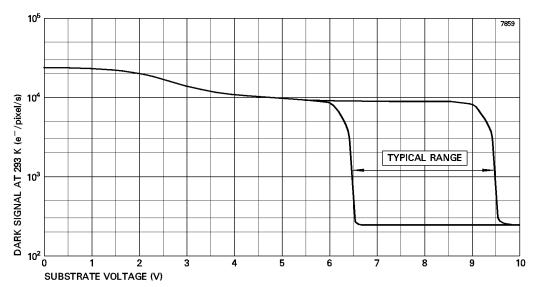
defects.

Black column A column which contains at least 9 black

defects.

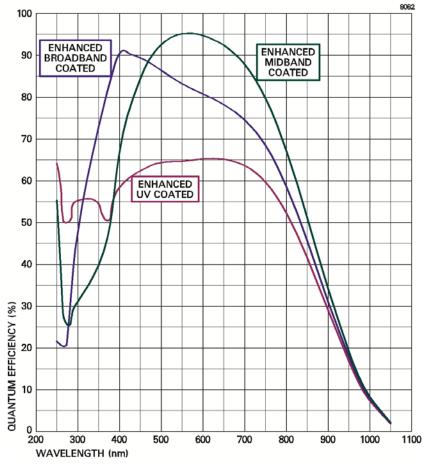

**Spikes** 

Are measured with the image fully binned into the register. Level 1 spikes are those above 50 k e<sup>-</sup>/column. Level 2 spikes are those above 200 k e<sup>-</sup>/column.

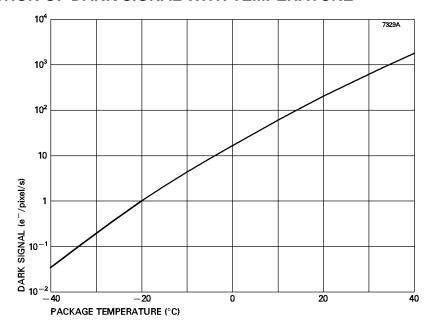

| GRADE                             | 0  | 1      | 2   |
|-----------------------------------|----|--------|-----|
| Column defects:<br>black<br>white | 0  | 1<br>0 | 6   |
| Black spots                       | 40 | 80     | 200 |
| Traps >200 e <sup>-</sup>         | 1  | 2      | 5   |
| White spots                       | 20 | 30     | 50  |
| Level 1 spikes                    | 15 | 20     | 30  |
| Level 2 spikes                    | 3  | 4      | 6   |

**Note:** The effect of temperature on defects is that traps will be observed less at higher temperatures but more may appear below 233 K. The amplitude of white spots and columns will decrease rapidly with temperature.

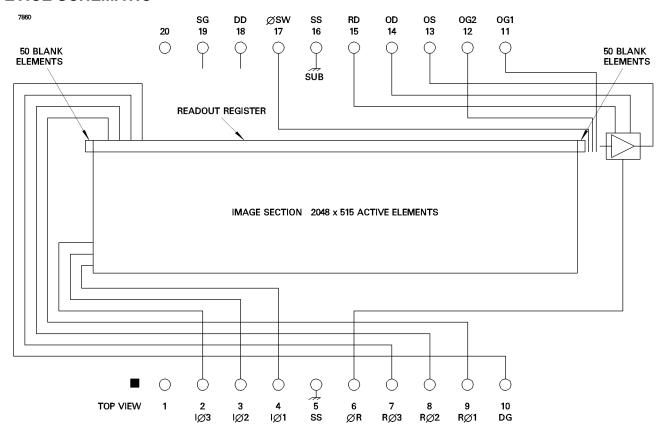
# TYPICAL OUTPUT CIRCUIT NOISE (Measured using clamp and sample)




## TYPICAL VARIATION OF DARK SIGNAL WITH SUBSTRATE VOLTAGE




# TYPICAL SPECTRAL RESPONSE (At -20 °C, no window)



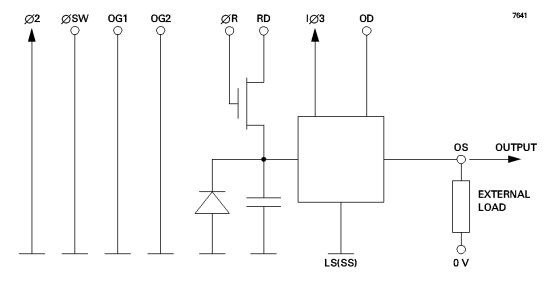



## TYPICAL VARIATION OF DARK SIGNAL WITH TEMPERATURE



## **DEVICE SCHEMATIC**

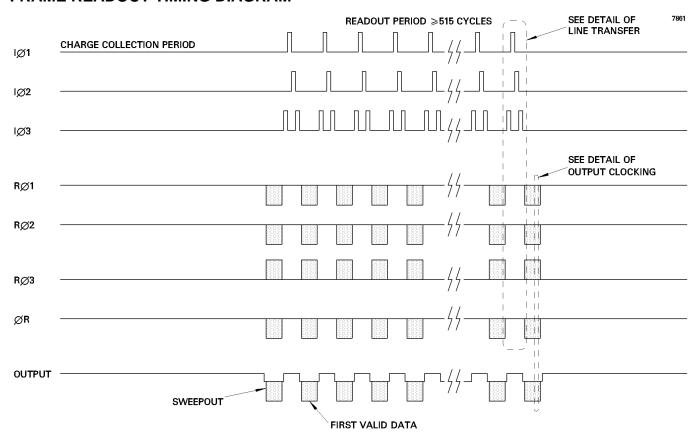



# CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

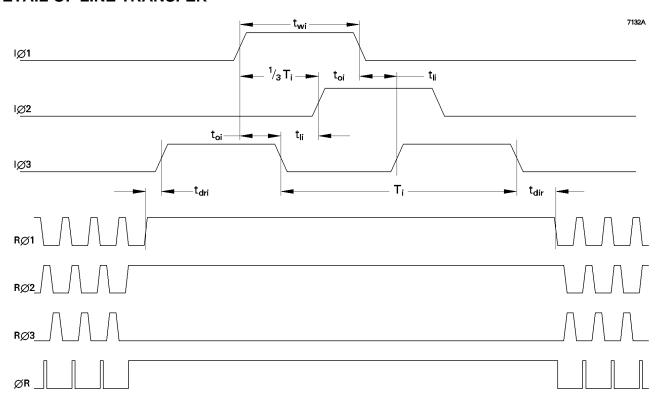
|     |     |                                         |                                            | SE AMPLITUD | MAXIMUM RATINGS      |                                 |
|-----|-----|-----------------------------------------|--------------------------------------------|-------------|----------------------|---------------------------------|
| PIN | REF | DESCRIPTION                             | DC LEVEL (V) (see note 6)  Min Typical Max |             |                      | with respect to V <sub>SS</sub> |
| 1   | -   | No connection                           |                                            | · · · · ·   |                      | -                               |
| 2   | IØ3 | Image section, phase 3 (clock pulse)    | 8                                          | 12          | 15                   | ±20 V                           |
| 3   | IØ2 | Image section, phase 2 (clock pulse)    | 8                                          | 12          | 15                   | ±20 V                           |
| 4   | IØ1 | Image section, phase 1 (clock pulse)    | 8                                          | 12          | 15                   | ±20 V                           |
| 5   | SS  | Substrate                               | 8                                          | 9.5         | 11                   | -                               |
| 6   | ØR  | Output reset pulse                      | 8                                          | 12          | 15                   | ±20 V                           |
| 7   | RØ3 | Readout register, phase 3 (clock pulse) | 8                                          | 12          | 15                   | ±20 V                           |
| 8   | RØ2 | Readout register, phase 2 (clock pulse) | 8                                          | 12          | 15                   | ±20 V                           |
| 9   | RØ1 | Readout register, phase 1 (clock pulse) | 8                                          | 12          | 15                   | ±20 V                           |
| 10  | DG  | Dump gate (see note 7)                  | -                                          | 0           | •                    | ±20 V                           |
| 11  | OG1 | Output gate 1                           | 2                                          | 3           | 4                    | ±20 V                           |
| 12  | OG2 | Output gate 2 (see note 8)              | -                                          | OG1 + 1 V   | ı                    | ±20 V                           |
| 13  | OS  | Output transistor source                |                                            | see note 9  |                      | −0.3 to +25 V                   |
| 14  | OD  | Output drain                            | 27                                         | 29          | 32                   | −0.3 to +25 V                   |
| 15  | RD  | Reset transistor drain                  | 15                                         | 17          | 19                   | −0.3 to +25 V                   |
| 16  | SS  | Substrate                               | 8                                          | 9.5         | 11                   | -                               |
| 17  | ØSW | Summing well (see note 10)              | 8                                          | 12          | 15                   | ±20 V                           |
| 18  | DD  | Diode drain                             | 22                                         | 24          | 26                   | −0.3 to +25 V                   |
| 19  | SG  | Spare gates                             | 0                                          | 0           | V <sub>SS</sub> + 19 | ±20 V                           |
| 20  | -   | No connection                           |                                            | -           |                      | -                               |

If all voltages are set to the typical values, operation at or close to specification should be obtained. Some adjustment within the range specified may be required to optimise performance.

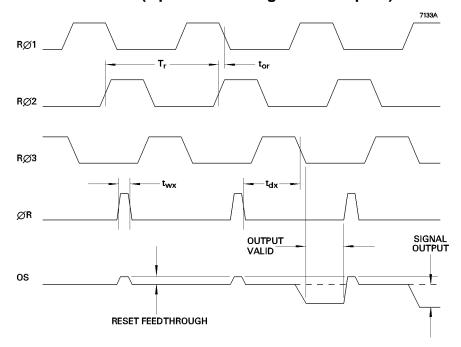
Maximum voltages between pairs of pins: OS to OD  $\pm$  15 V Maximum current through any source or drain pin: 10 mA


### **OUTPUT CIRCUIT**

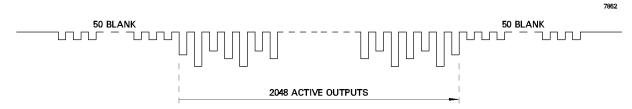



#### **NOTES**

- 6. Readout register clock pulse low levels + 1 V; other clock low levels  $0 \pm 0.5$  V.
- 7. Non-charge dumping level shown. For charge dumping, DG should be pulsed to  $12 \pm 2 \text{ V}$ .
- 8. Use OG2 = OG1 + 1 V for normal, low noise mode, or 20 V for low responsivity, high signal mode.
- 9. Not critical; can be a 1 -- 5 mA constant current source, or 5 -- 10 k $\Omega$  resistor.
- 10. For normal operation, the summing well should be clocked as  $R\varnothing 3$ .
- 11. The amplifier has a DC restoration circuit, which is activated internally whenever IØ3 is pulsed high


## FRAME READOUT TIMING DIAGRAM




## **DETAIL OF LINE TRANSFER**



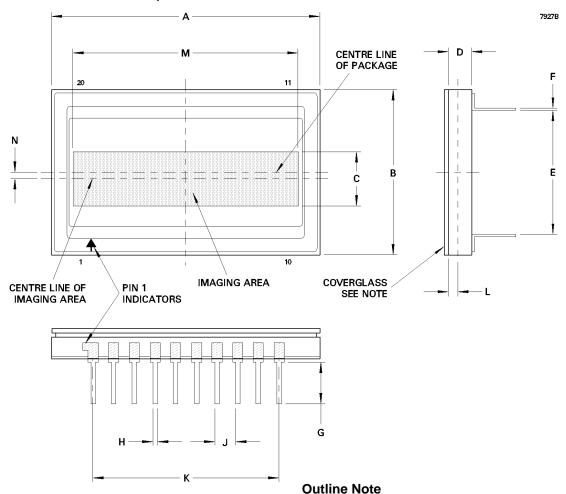
# **DETAIL OF OUTPUT CLOCKING (Operation through both outputs)**



# **LINE OUTPUT FORMAT (Split read-out operation)**



## **CLOCK TIMING REQUIREMENTS**


| Symbol           | Description                             | Min             | Typical            | Max                |    |
|------------------|-----------------------------------------|-----------------|--------------------|--------------------|----|
| $T_i\square$     | Image clock period                      | 15              | 30                 | see note 12        | μS |
| t <sub>wi</sub>  | Image clock pulse width                 | 7               | 15                 | see note 12        | μS |
| t <sub>ri</sub>  | Image clock pulse rise time (10 to 90%) | 0.5             | 2                  | 0.5t <sub>oi</sub> | μS |
| t <sub>fi</sub>  | Image clock pulse fall time (10 to 90%) | t <sub>ri</sub> | 2                  | 0.5t <sub>oi</sub> | μS |
| t <sub>oi</sub>  | Image clock pulse overlap               | 3               | 5                  | 0.2T <sub>i</sub>  | μS |
| t <sub>li</sub>  | Image clock pulse, two phase low        | 3               | 5                  | 0.2T <sub>i</sub>  |    |
| t <sub>dir</sub> | Delay time, I∅ stop to R∅ start         | 3               | 5                  | see note 12        | μS |
| t <sub>dri</sub> | Delay time, RØ stop to IØ start         | 1               | 2                  | see note 12        | μS |
| T <sub>r</sub>   | Output register clock cycle period      | 333             | see note 13        | see note 12        | ns |
| t <sub>rr</sub>  | Clock pulse rise time (10 to 90%)       | 50              | 0.1T <sub>r</sub>  | 0.3T <sub>r</sub>  | ns |
| t <sub>fr</sub>  | Clock pulse fall time (10 to 90%)       | t <sub>rr</sub> | $0.1T_{r}$         | 0.3T <sub>r</sub>  | ns |
| t <sub>or</sub>  | Clock pulse overlap                     | 20              | 0.5t <sub>rr</sub> | 0.1T <sub>r</sub>  | ns |
| $t_{wx}$         | Reset pulse width                       | 30              | 0.1T <sub>r</sub>  | 0.2T <sub>r</sub>  | ns |
| $t_{rx}, t_{fx}$ | Reset pulse rise and fall times         | 20              | 0.5t <sub>rr</sub> | 0.2T <sub>r</sub>  | ns |
| t <sub>dx</sub>  | Delay time, ØR low to RØ3 low           | 30              | $0.5T_{r}$         | 0.8T <sub>r</sub>  | ns |

## **NOTES**

- 12. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.
- 13. As set by the readout period.

# **OUTLINES (All dimensions without limits are nominal)**

## Devices are not screened for compliance to the limits stated



| Ref | Millimetres  |         |  |
|-----|--------------|---------|--|
| Α   | 32.89 ±      | ± 0.38  |  |
| В   | 20.07 ±      | ± 0.25  |  |
| С   | 6.9          |         |  |
| D   | 2.79 ±       | 0.28    |  |
| Е   | 15.24 ±      | ± 0.25  |  |
| F   | 0.254        | + 0.051 |  |
| Г   |              | - 0.025 |  |
| G   | 5.2          |         |  |
| Η   | $0.46 \pm$   | 0.05    |  |
| 7   | 2.54 ±       | 0.13    |  |
| K   | 22.86 ± 0.13 |         |  |
| L   | 1.14 ± 0.25  |         |  |
| М   | 27.6         |         |  |
| Z   | 8.0          |         |  |

The device is normally supplied with a temporary glass window for protection purposes. It can also be supplied with a fixed, quartz or fibre-optic window where required.

#### ORDERING INFORMATION

Options include:

- Temporary quartz window
- Permanent quartz window
- Temporary glass window

For further information on the performance of these and other options, contact e2v.

## HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be positively grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty. All devices are provided with internal protection circuits to the gate electrodes (pins 2, 3, 4, 6, 7, 8, 9, 12, 19) but not to the other pins.

## HIGH ENERGY RADIATION

Device parameters may begin to change if subject to ionising radiation.

Users planning to use CCDs in high radiation environments are advised to contact e2v.

#### **TEMPERATURE LIMITS**

|           | Min | Typical | Max |   |
|-----------|-----|---------|-----|---|
| Storage   | 153 | -       | 373 | Κ |
| Operating | 153 | 233     | 323 | Κ |

Operation or storage in humid conditions may give rise to ice on the sensor surface on cooling, causing irreversible damage.

Maximum device heating/cooling ......5 K/min