

TELEDYNE CCD290-66 Back Illuminated Scientific Sensor 6144 x 6160 Pixels, Eight Outputs **Non-Inverted Mode Operation**

INTRODUCTION

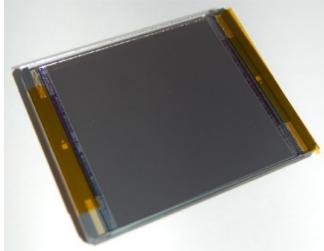
The CCD290 has been designed to provide a large image area for demanding astronomical and scientific imaging applications. Back-illuminated spectral response combined with very low read-out noise give exceptional sensitivity.

DESCRIPTION

The sensor has an image area having 6144 × 6160 pixels with registers at both top and bottom each with four outputs for short read-out times. The pixel size is 10 µm square. The image area has two separately connected sections to allow full-frame or split full-frame read-out modes. Depending on the mode, the read-out can be through 4 or 8 of the output circuits. A fixed-barrier dump drain is also provided to allow fast dumping of unwanted data.

The output amplifier is designed to give very low noise at read-out rates of up to 3 MHz. The low output impedance simplifies the interface with external electronics and the optional dummy outputs are provided to facilitate common mode rejection.

The package provides a compact footprint with guaranteed flatness at cryogenic temperatures. Connections are made at the top and bottom of the device via the PGA on the underside.


Specifications are tested and guaranteed at 173K (-100 °C).

The CCD290 is a non-inverted (non-MPP) type.

VARIANTS

Standard silicon and deep-depletion silicon device types can be supplied with a range of AR coatings.

Consult Teledyne e2v for further information on any of the above options.

Picture is for illustrative purpose only. It includes the temporary window. The visual appearance may differ from actual delivered devices

SUMMARY PERFORMANCE (Typical)

Number of pixels	6144 (H) × 6160 (V)
Pixel size	10 µm square
Image area	61.4 mm × 61.6 mm
Outputs	8
Package size	63.8 × 79.6 mm
Package format	Aluminium Nitride PGA
Focal plane height, above ground rear side of package	3.5 mm
Connectors	Pin Grid Array (PGA)
Flatness	20 µm (peak to valley)
Amplifier sensitivity	7.5 μV/e⁻
Read-out noise	4 e⁻ at 0.5 MHz 2.5 e⁻ at 50 kHz
Maximum pixel data rate	3 MHz
Charge storage (pixel full well)	90,000 e⁻
Dark signal	4 e⁻/pixel/hour (at –100 °C)

Quoted performance parameters given here are "typical" values. Specification limits are shown later.

Teledyne e2v (UK) Limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU United Kingdom Teledyne e2v (UK) Ltd. is a Teledyne Technologies company. Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492

Contact Teledyne e2v by e-mail: Enquiries@Teledyne-e2v.com or visit www.teledyne-e2v.com for global sales and operations centres.

Whilst Teledyne e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. Teledyne e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.

PERFORMANCE SPECIFICATIONS

Deveryoter	Turnical	Grade	0 and 1	Gra	de 2		
Parameter	Typical	Min	Max	Min	Max	Units	Note
Peak charge storage (image pixel)	90,000	70,000	-	60,000	-	e⁻/pixel	2(a)
Peak charge storage (register SW)	140,000	-	-	-	-	e⁻/pixel	2(b)
Output node capacity: OG low mode 1 (not factory tested) OG high mode 2 (not factory tested)	240,000 700,000	-	-	- -	-	e⁻ e⁻	2(c)
Output amplifier responsivity: mode 1 mode 2 (not factory tested)	7.5 2.5	5.5 -	-	5.0 -	-	μV/e⁻ μV/e⁻	3
Non-linearity	0.5	-1.5	+1.5	-3.0	+3.0	%	
Read-out noise 50 kHz (not factory tested) 500 kHz	2.5 4	-	- 7	-	- 10	e⁻ rms	4
Dark signal: at 173 K at 153 K	4 0.02	-	- 2.0	-	- 4.0	e⁻/pixel/hr e⁻/pixel/hr	5
Charge transfer efficiency: parallel serial	99.9995 99.9995	99.9990 99.9990	-	99.9985 99.9985	-	% %	6
Flatness peak-to-valley	20	-	30	-	50	μm	7

NOTES

- Device electro-optical performance will be within the limits specified by "max" and "min" when operated at the recommended voltages supplied with the test data and when measured at a register clock frequency of approximately 0.1 – 1.0 MHz. Acceptance tests are performed at 173K and at a nominal 500 kHz pixel rate.
- 2. (a) Signal level at which resolution begins to degrade. Device is non-inverted (NIMO/non-MPP), for maximum full well.
 - (b) The summing well capacity limits the charge in the register. The limiting value may change in mode-2 but is not tested.
 - (c) The signal handled by the output node (for linear operation) varies with mode as shown.
- 3. Under normal operation (mode 1), SW is operated as a summing well or clocked as RØ3. OG is biased at a low DC level.

Alternatively (mode 2), SW may be operated as an output gate (and not therefore available for summing) and biased at a low DC level with OG raised to a high voltage (see note 9 later). This gives more charge-handling capacity (e.g. for higher level pixel binning). Charge transfer to the output now occurs as RØ2 goes low. In mode-2, the output noise will also increase by a factor of three. Mode-2 is not factory tested.

- 4. Noise is specified and measured using correlated double sampling at 500 kHz nominal read-out rate in mode 1 only. Performance at 50 kHz is also indicated (but not production-tested). Noise (as with all factory test images) is measured with differential readout, i.e. with the dummy output. The noise value reported is a single ended equivalent value with no dummy, by dividing by the √2 factor that arises from the differential subtraction. This way test system induced noise is reduced.
- 5. Dark signal is typically measured at a device temperature of 173 K. It is a strong function of temperature and the typical average (background) dark signal at any temperature T (kelvin) between 150 K and 300 K is given by:

 $Q_d/Q_{do} = 122T^3e^{-6400/T}$

where Q_{do} is the dark current at 293 K.

Note that this is typical performance and some variation may be seen between devices.

- 6. Measured with a ⁵⁵Fe X-ray source. The CTE value is quoted for the complete clock cycle (i.e. not per phase)
- 7. Mechanical parameters are measured at room temperature. The flatness measured at room temperature is extrapolated to a value at 173K based on modelling results.

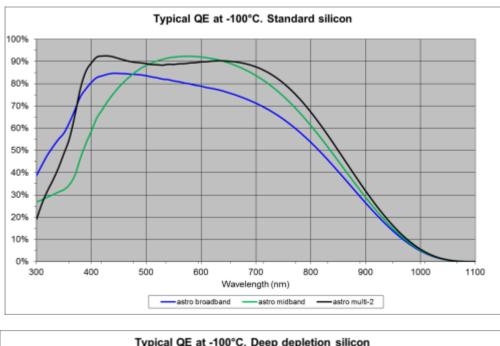
SPECTRAL RESPONSE SPECIFICATIONS

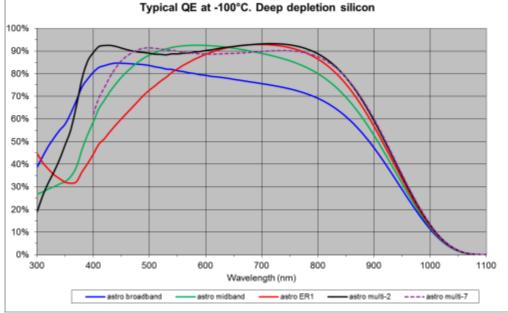
The table below gives guaranteed minimum values of the spectral response for several variants. PRNU is also shown.

	DD silicon Astro Multi-2	Standard silicon Astro Multi-2	Pixel Response Non-Uniformity PRNU (1 σ)
Wavelength (nm)	Minimum QE (%)	Minimum QE (%)	Maximum PRNU (%)
350	30	30	-
400	75	75	3
500	75	75	-
650	80	80	3
900	50	25	5

Default Coatings

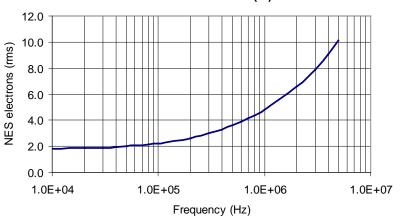
Alternative Custom Coatings


	DD silicon Astro Broadband	DD silicon Astro Midband	DD silicon Astro ER1	DD silicon Astro Multi-7	Standard silicon Astro Broadband	Standard silicon Astro Broadband	Standard silicon Astro Midband	Pixel Response Non-Uniformity PRNU (1 σ)
Wavelength (nm)	Minimum QE (%)	Minimum QE (%)	Minimum QE (%)	Minimum QE (%)	Minimum QE (%)	Minimum QE (%)	Minimum QE (%)	Maximum PRNU (%)
350	40	20	20	-	40	40	20	-
400	70	50	35	45	70	70	50	3
500	75	80	65	75	80	80	80	-
650	70	80	80	80	75	75	80	3
900	40	40	45	50	25	25	25	5


SPECTRAL RESPONSE NOTES

- a) The above specifications are for grades 0 and 1 devices. Grade 2 device specifications are 5% absolute lower for guaranteed QE minimum values and 1% absolute higher for guaranteed PRNU maximum values.
- b) Standard silicon has a nominal active thickness of 16 μm. DD is Deep Depletion silicon with a higher resistivity and a nominal active thickness of 40 μm.
- c) The multi-7 coating is designed specifically for the 500 to 1000 nm region; it has lower reflectivity (and fringing) than the multi-2 coating at the longest wavelengths.
- d) The availability of coatings varies depending on type; check with factory.
- e) Devices with alternative or custom spectral response may be available by special request. Consult Teledyne e2v.

See also the typical spectral response figures below.


TYPICAL SPECTRAL RESPONSE CURVES

TYPICAL AMPLIFIER READ NOISE

The modelled variation of typical output amplifier read noise with operating frequency is shown below. This assumes correlated double sampling with a pre-sampling bandwidth equal to twice the pixel rate in mode 1, temperature range 150 – 230 K

Estimated Read Noise (BI)

GRADE DEFINITIONS AND COSMETIC SPECIFICATIONS

Maximum allowed cosmetic defect levels are indicated below.

	Guaranteed Specifications			Typical Values			
Grade	0	1	2	0	1	2	
Column defects - black or white	10	20	30	<3	<5	<10	
White spots	700	1400	2100	<450	<900	<1350	
Total (black & white) spots	1800	3600	5400	<900	<1800	<2700	
Traps > 200e-	13	20	30	<7	<13	<20	

Grade 1: Grade 1 is the default grade for general science use; contact the factory for upgrade to grade-0.

Grade 2: Contact the factory for availability of grade 2 devices. They are generally not made to order but may be available from time to time to be supplied as lower grade imaging devices.

Grade 5: Grade 5 devices are classed as electrical models only and as such have no performance guarantees. They will generally be supplied with all 8 outputs confirmed as operating 'nominally' but have no image quality guarantee. Any other test data measured will be supplied for information only.

Grade 6: Grade 6 is a mechanical model. These are not electrically functioning but do have representative mechanical parameters.

DEFECT DEFINITIONS

Defect in Darkness Bright/White Spots	A defect in darkness is a pixel with dark generation rate $\ge 5 \text{ e}^{-7}$ /pixel/s at 173 K. (which is also equivalent to $\ge 100 \text{ e}^{-7}$ /hour at 153 K). The temperature dependence is the same as for the mean dark signal; see note 5 above.
PR Defect	A PR defect dark spot is a pixel with a photo-response outside \leq 50% of the local mean.
Column defects	A column is counted as a defect if it contains at least 400 bright or dark single pixel defects. Each defective column is only counted once.
Traps	A trap causes charge to be temporarily held in a pixel and these are counted as defects if the quantity of trapped charge is greater than 200 e ⁻ at the specified test temperature.
Defect exclusion zone	Defect measurements are excluded from the outer two rows of the sensor.

DEFINITIONS

Back-Thinning

A back-thinned CCD is fabricated on the front surface of the silicon and is subsequently processed for illumination from the reverse side. This avoids loss of transmission in the electrode layer (which can be particularly significant at shorter wavelengths or with low energy X-rays). This process requires the silicon to be reduced to a thin layer by a combination of chemical and mechanical means. The surface is "passivated" and an anti-reflection coating may be added.

AR Coating

Anti-reflection coatings are normally applied to the back illuminated CCD to further improve the quantum efficiency. Standard coatings optimise the response in the visible, ultra-violet or infrared regions. For X-ray detection an uncoated device may be preferable.

Read-out Noise

Read-out noise is the random noise from the CCD output stage in the absence of signal. This noise introduces a random fluctuation in the output voltage that is superimposed on the detected signal.

The method of measurement involves reverse-clocking the register and determining the standard deviation of the output fluctuations, and then converting the result to an equivalent number of electrons using the known amplifier responsivity.

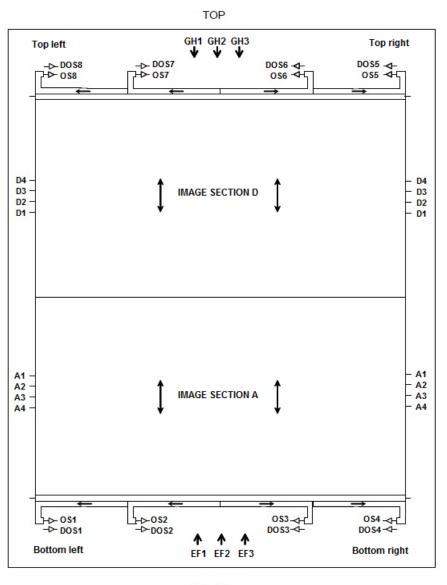
Dummy Output

Each output has an associated "dummy" circuit on-chip, which is of identical design to the "real" circuit but receives no signal charge. The dummy output should have the same levels of clock feed-through, and can thus be used to suppress the similar component in the "real" signal output by means of a differential pre-amplifier. The penalty is that the noise is increased by a factor of $\sqrt{2}$. If not required the dummy outputs may be powered down.

Dark Signal

This is the output signal of the device with zero illumination. This typically consists of thermally generated electrons within the semiconductor material, which are accumulated during signal integration. Dark signal is a strong function of temperature as described in note 6.

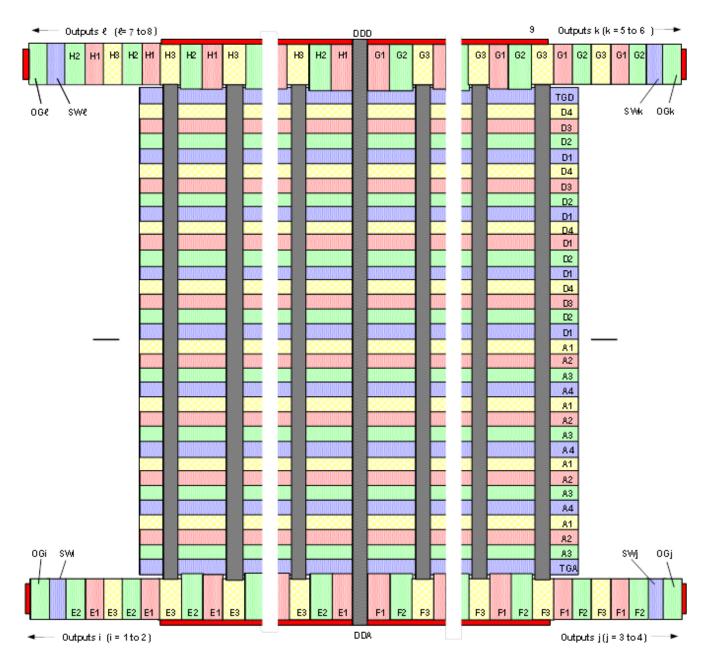
Correlated Double Sampling


A technique for reducing the noise associated with the charge detection process by subtracting a first output sample taken just after reset from a second sample taken with charge present.

Charge Transfer Efficiency

The fraction of charge stored in a CCD element that is transferred to the adjacent element by a single clock cycle. The charge not transferred remains in the original element, possibly in trapping states and may possibly be released into later elements. The value of CTE is not constant but varies with signal size, temperature and clock frequency.

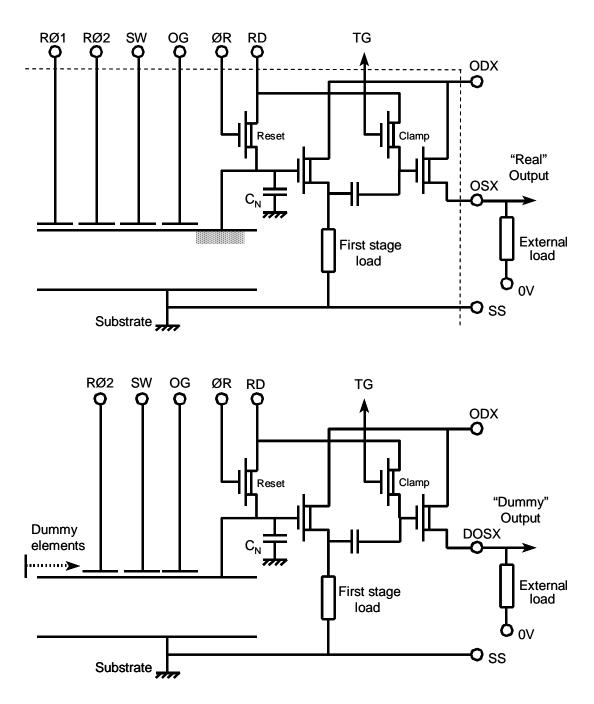
ARCHITECTURE


Chip Schematic

BOTTOM

Image sections A and D each have a total of 6144 (H) \times 3080 (V) pixels. Each register section has a total of 1563 elements: 1536 active and 27 pre-scan.

ARRANGEMENT OF ELECTRODES



Pre-scan (blank) serial elements are not shown here.

Each output consists of real (OS) and dummy (DOS); see next page.

OUTPUT CIRCUIT

X designates a specific output, namely 1 to 16 (see the chip schematic).

The first stage load of each output (real or dummy) draws a quiescent current of approximately 0.2 mA via SS.

The output circuit consists of two capacitor-coupled source-follower stages. The particular design has a very high responsivity to give lowest noise. The load for the first stage is on-chip and that for the second stage is external, as next described. The DC restoration circuitry requires a pulse at the start of line readout, and this is automatically obtained by an internal connection to the adjacent transfer gate, TG. Transferring a line of charges to the register thus automatically activates the circuitry. TG pulses still need to be applied at similar intervals if only the register and/or output circuit are being operated, e.g. for test or characterisation purposes.

The amplifier output impedance is typically 400 Ω .

ELECTRICAL INTERFACES

Pins 1 to 40

PIN	REF	DESCRIPTION	CLOCK A	MPLITUDE OR DO (See note 10)	CLEVEL (V)	MAX RATINGS (V)	
			Min	Typical	Max	with respect to V _{ss}	
1	A4	Image clock	9	11	12	±20	
2	A1	Image clock	9	11	12	±20	
3	A2	Image clock	9	11	12	±20	
4	A3	Image clock	9	11	12	±20	
5	SS	Substrate (see note 11)	0	0	10		
6	TGA	Image Area A Transfer gate/ DC restore clock for outputs 1 and 2	9	11	12	±20	
7	DOS1	Dummy Output Source 1		(see note 8)			
8	OS1	Output Source 1		(see note 8)			
9	OD2	Output drain 2	25	29	32	-0.3 to +35	
10	OD1	Output drain 1	25	29	32	-0.3 to +35	
11	DOS2	Dummy Output Source 2		(see note 8)			
12	OS2	Output Source 2		(see note 8)			
13	SS	Substrate (see note 11)	0	0	10	-	
14	RD1/2	Reset drain 1 and 2	16	17	19	-0.3 to +35	
15	DDA	Dump Drain (A) (See note 13)	15	18	20	-0.3 to +35	
16	ØR1/2	Reset Gate 1 and 2	9	12	13	±20	
17	SS	Substrate (see note 11)	0	0	10	-	
18	E1/F1	Register E & Register F clock phase 1	9	10	12	±20	
19	N/C	No Connection					
20	E2/F2	Register E & Register F clock phase 2	9	10	12	±20	
21	N/C	No Connection					
22	E3/F3	Register E & Register F clock phase 3	9	10	12	±20	
23	SS	Substrate (see note 11)	0	0	10	-	
24	SWA	Summing well (A) (See note 9)	9	10	12	±20	
25	OGA	Output gate (A)	1	2	(note 9)	±20	
26	ØR3/4	Reset Gate 3 and 4	9	12	13	±20	
27	SS	Substrate (see note 11)	0	0	10	-	
28	RD3/4	Reset drain 3 and 4	16	17	19	-0.3 to +35	
29	DOS3	Dummy Output Source 3		(see note 8)			
30	OS3	Output Source 3		(see note 8)			
31	OD3	Output drain 3	25	29	32	-0.3 to +35	
32	OD4	Output drain 4	25	29	32	-0.3 to +35	
33	DOS4	Dummy Output Source 4		(see note 8)			
34	OS4	Output Source 4		(see note 8)			
35	SS	Substrate (see note 11)	0	0	10	-	
36	TGA	Image Area A Transfer gate/ DC restore clock for outputs 3 and 4	9	11	12	±20	
37	A2	Image clock	9	11	12	±20	
38	A3	Image clock	9	11	12	±20	
39	A4	Image clock	9	11	12	±20	
40	A1	Image clock	9	11	12	±20	

Pins 41-80

PIN	REF	DESCRIPTION	CLOCK AMPLITUDE OR DC LEVEL (V) (See note 10)			MAX RATINGS (V)
			Min	Typical	Max	with respect to V _{ss}
41	D1	Image clock left bus	9	11	12	±20
42	D4	Image clock left bus	9	11	12	±20
43	D3	Image clock left bus	9	11	12	±20
44	D2	Image clock left bus	9	11	12	±20
45	SS	Substrate (see note 11)	0	0	10	
46	TGD	Image Area D Transfer gate/ DC restore clock for outputs 5 and 6	9	11	12	±20
47	DOS5	Dummy Output Source 5		(see note 8)		
48	OS5	Output Source 5		(see note 8)		
49	OD6	Output drain 6	25	29	32	-0.3 to +35
50	OD5	Output drain 5	25	29	32	-0.3 to +35
55	DOS6	Dummy Output Source 6		(see note 8)		
52	OS6	Output Source 6		(see note 8)		
53	SS	Substrate (see note 11)	0	0	10	-
54	RD5/6	Reset drain 5 and 6	16	17	19	-0.3 to +35
55	DDD	Dump Drain (D) (See note 13)	15	18	20	-0.3 to +35
56	ØR5/6	Reset Gate 5 and 6	9	12	13	±20
57	SS	Substrate (see note 11)	0	0	10	-
58	G2/H2	Register G & Register H clock phase 2	9	10	12	±20
59	N/C	No Connection				
60	G1/H1	Register G & Register H clock phase 1	9	10	12	±20
61	N/C	No Connection				
66	G3/H3	Register G & Register H clock phase 3	9	10	12	±20
63	SS	Substrate (see note 11)	0	0	10	
64	SWD	Summing well D (See note 9)	9	10	12	±20
65	OGA	Output gate (A)	1	2	(note 9)	±20
66	ØR7/8	Reset Gate 7 and 8	9	12	13	±20
67	SS	Substrate (see note 11)	0	0	10	-
68	RD7/8	Reset drain 7 and 8	16	17	19	-0.3 to +35
69	DOS7	Dummy Output Source 7		(see note 8)	-	
70	OS7	Output Source 7		(see note 8)		
71	OD7	Output drain 7	25	29	32	-0.3 to +35
72	OD8	Output drain 8	25	29	32	-0.3 to +35
77	DOS8	Dummy Output Source 8	-	(see note 8)		
74	OS8	Output Source 8		(see note 8)		
75	SS	Substrate (see note 11)	0	0	10	-
76	TGD	Image Area D Transfer gate/ DC restore clock for outputs 7 and 8	9	11	12	±20
77	D3	Image clock left bus	9	11	12	±20
78	D2	Image clock left bus	9	11	12	±20
79	D1	Image clock left bus	9	11	12	±20
80	D4	Image clock left bus	9	11	12	±20

NOTES

 Do not connect to voltage supply but use a ~5 mA current source or a ~5 kΩ external load. The quiescent voltage on OS is then about 6 - 8 V above the reset drain voltage and is typically 24 V. The current through these pins must not exceed 20 mA. Permanent damage may result if, in operation, OS or DOS experience short circuit conditions.

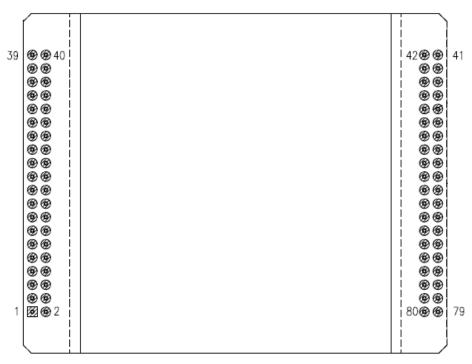
For highest speed operation the output load resistor can be reduced from 5 k Ω to approximately 2.2 k Ω , but note that this will increase power consumption. If the device is to be operated with a register clock period of below about 1 MHz then the load may be increased to 10 k Ω to reduce power consumption.

9. Default operation (mode 1) shown with OG set to OG-Low, with a +2 V nominal value. In this mode SW may be clocked as RØ3 if a summing well function is not required. OG-Low should have a maximum value of +5 V.

For alternative operation in a low responsivity mode (mode 2) with increased charge handling, OG should be set to OG-High and SW should be operated as OG-Low (i.e. 2V typical). See below for appropriate OG-High values. Charge is now read out as RØ2 goes low.

See note 11 also for discussion about Substrate voltage (Vss). With high substrate voltage OG-High may be set to a nominal +20 V, which offers best linearity in mode-2. With low substrate voltage, the allowed maximum value of OG-High is limited to a nominal +18 V; the lower OG-High value has a greater non-linearity. Mode-2 is not factory tested.

10. To ensure that any device can be operated the camera should be designed so that any value in the range "min" to "max" can be provided. All operating voltages are with respect to image clock low (nominally 0 V).


For the clock pulses, the high levels are shown in the table. The image clock low is set to 0 V. The register and SW clock low levels are +1 V. Reset clock low is set to 0 V.

In all cases, specific recommended settings will be supplied with each science-grade sensor.

11. The substrate voltage (Vss) has a default value of 0 V ("low" substrate). This is particularly recommended for deep-depletion device variants, since it optimises depletion depth for best Point Spread Function. Devices may alternatively be operated at "high" substrate, with Vss = 9 V. The high substrate setting offers slightly lower dark current, although this is usually not of primary concern when the device is cryogenically cooled. See also note 19 below, referring to Vss level as prior to readout.

The substrate setting has some consequence for the allowed OG upper voltage level, as discussed in note 9.

- 12. Standard silicon variants are expected to be used with ØR at +10 V or more; deep depletion variants require at least +12 V. A higher value will give a correspondingly higher reset feed-through signal in the device output (OS).
- 13. The DD voltage level determines the level at which register overspill into the drain occurs.

PIN CONNECTIONS (View facing pins of package)

POWER UP/POWER DOWN

When powering the device up or down it is critical that any specified maximum rating is not exceeded. Specifically the voltages for the amplifier and dump drains (OD, RD, DD) must never be taken negative with respect to the substrate. Hence, if the substrate is to be operated at a positive voltage (e.g. to minimise dark current) then the drive electronics should have a switch-on sequence which powers up all the drains to their positive voltages before the substrate voltage starts to increase from zero.

It is also important to ensure that excess currents (see note 8) do not flow in the OS or DOS pins. Such currents could arise from rapid charging of a signal coupling capacitor or from an incorrectly biased DC-coupled preamplifier.

Similarly, for powering down, the substrate must be taken to zero voltage before the drains.

FRAME READ-OUT MODES

The device can be operated in a full-frame or split full-frame mode.

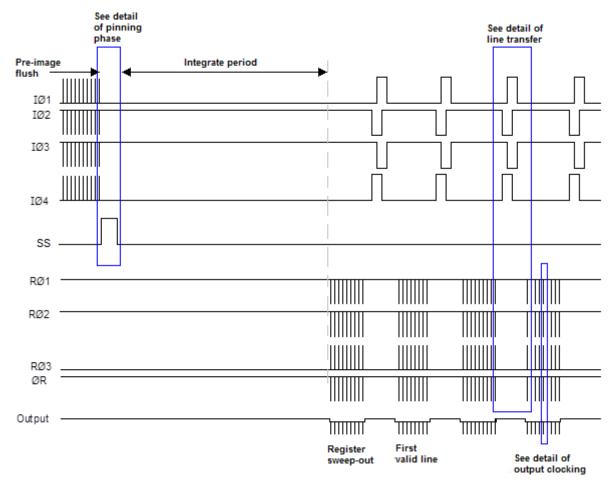
If the applied drive pulses are designated IØ1, IØ2, IØ3 and IØ4, then connections should be made as tabulated below to effect the following directions of transfer.

Clock Generator Drive Pulse Name	IØ1	IØ2	IØ3	IØ4	
A section transfer towards E register	A1	A2	A3	A4	TGA = IØ4
D section transfer towards G register	D1	D2	D3	D4	TGD = IØ1
A section transfer towards G register	A4	A3	A2	A1	TGA = "low"
D section transfer towards E register	D4	D3	D2	D1	TGD = "low"

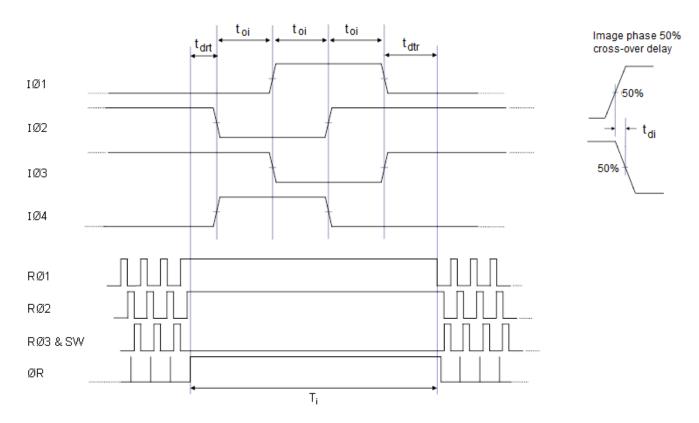
The first two transfer sequences are for split frame read-out. The second two are for reversing the transfer direction in either section for read-out to either the top or the bottom register sections.

Transfer from the image section to the register is into the phase 1 and 2 electrodes, i.e. E/F1, G/H1, E/F2 and G/H2. These electrodes must be held at clock "high" level during the process. If the register pulses are designated RØ1, RØ2 and RØ3, then connections should be made as tabulated below.

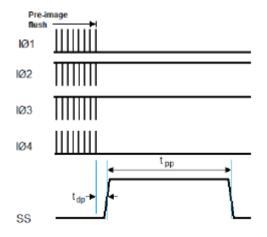
Clock Generator Drive Pulse Name	RØ1	RØ2	RØ3
E section	E1/F1	E2/F2	E3/F3
G section	G1/H1	G2/H2	G3/H3

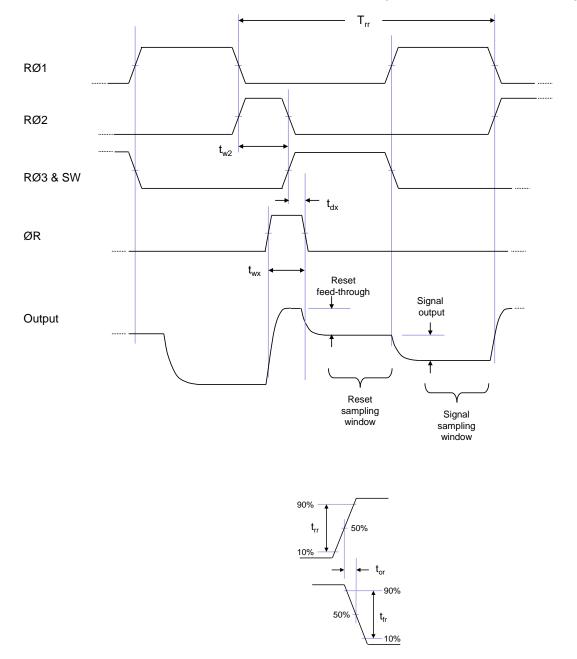

The last electrode before the output gate is separately connected to give the function of a summing well (SW). In normal readout (i.e. if not used for summing), SW is clocked as RØ3. For summing, the selected SW gate is held at clock "high" level for the required number of readout cycles, and then clocked as RØ3 to output charge.

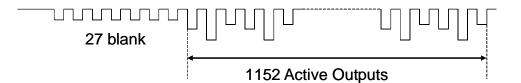
Alternatively, SW may be operated as a second output gate to provide the option of operation in low gain/high signal mode (mode 2) with OG high. If this mode of operation is used, then the sequencing of the output clocks must be changed, as charge now transfers into the output node as RØ2 goes low (see note 9 above also).


Image phases 2 and 3 should be held high during signal collection, as shown in the following figures.

The register is provided with an anti-blooming dump drain to limit the peak signal capacity. For charge dumping purposes rows of charge signals may be clocked into the register sections and any excess charge above full-well capacity spills into the drain. There must then be a single line read-out to remove the unwanted charge (i.e. which can be up to the full-well capacity) before transferring the wanted row or rows of charge signals into the register sections. However, please see note 13 above also.


FRAME READ-OUT TIMING DIAGRAM


DETAIL OF LINE TRANSFER

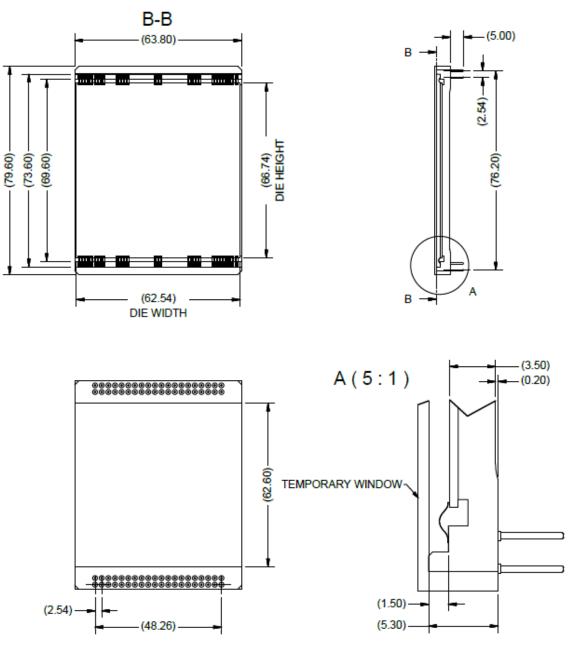

DETAIL OF PINNING PHASE (see note 19)

DETAIL OF REGISTER AND OUTPUT CLOCKING (with SW clocked as RØ3)

LINE OUTPUT FORMAT

CLOCK TIMING REQUIREMENTS

Symbol	Description	Minimum	Typical	Maximum	Units
Ti	Line transfer time (see note 14)	120	300	-	μs
t _{di}	Delay in falling image clock 50 % point from rising image clock 50 %point (see note 15)	0	30	500	ns
t _{oi}	Image clock pulse overlap	25	60	-	μs
t _{ri}	Image clock and transfer gate pulse rise time	2	5	0.3 t _{oi}	μs
t _{fi}	Image clock and transfer gate pulse fall time	2	5	0.3 t _{oi}	μs
t _{drt}	Delay time, RØ stop to IØ rising	15	30	-	μs
t _{dtr}	Delay time, IØ falling to RØ start	30	80	-	μs
t _{pp}	Substrate high duration during pinning phase	150	150	-	ms
t _{dp}	Delay time, last image flush clock transition to substrate rising	3	3	-	ms
T _{rr}	Register clock period (see note 16)	300	2000	(see note 17)	ns
t _{w2}	RØ2 pulse width at 50% levels (see note 18)	3t _{rx}	350	T _{rr} /3	ns
t _{rr}	Register clock pulse rise time	10	70	0.05T _{rr}	ns
t _{fr}	Register clock pulse fall time	10	70	0.05Trr	ns
t _{or}	Register clock pulse edge overlap at 50% levels	0	50	0.05T _{rr}	ns
t _{wx}	Reset pulse width at 50% levels	3t _{rx}	300	0.2T _{rr}	ns
t _{rx}	Reset pulse rise time	10	50	0.2t _{wx}	ns
t _{fx}	Reset pulse fall time	10	50	0.2t _{wx}	ns
t _{dx}	Delay time, RØ falling to ØR falling	2t _{fr}	150	-	ns


NOTES

14. $T_i = t_{drt} + 3t_{oi} + t_{dtr}$.

- 15. The IØ1/IØ3, IØ2/IØ4, IØ3/IØ1 and IØ4/IØ2 transitions are nominally coincident with the edges overlapping at 50% amplitude.
- 16. The typical timing is for readout at frequencies in the region of 500 kHz, as used for factory tests.
- 17. For highest speed operation the output load resistor can be reduced from 5 kΩ to approximately 2.2 kΩ, but note that this will increase power consumption. If the device is to be operated with a register clock period of below about 1 MHz, then the load may be increased to 10 kΩ to reduce power consumption.
- 18. The RØ2 pulse-width is normally minimised, as shown, such that the RØ1 and RØ3 pulse widths can be increased to maximise the output reset and signal sampling intervals.
- 19. The large area and small pixel size of the CCD290 requires changes to be made to the standard mode of operation, particularly for devices manufactured from deep depletion silicon. This is because for this version of the CCD290, holes are not efficiently removed from the device with standard clocking and it is possible that the structure can be left with holes partially filling the isolation regions giving a photo-response non uniformity along each column. Visually this appears as a "tear" in the image. This effect is most visible with flat field images and is independent of image intensity. To remove this effect the substrate should be pulsed high by +10 V with respect to image clock low for a short period prior to integration, This substrate high pinning phase is implemented by Teledyne e2v during acceptance testing. Alternatively, the image clocks can be reduced -10V below substrate if independent control of substrate voltage is not available.

PACKAGE DETAIL

The package nominal dimensions are shown below. Contact Teledyne e2v for further details or tolerances.

TEMPERATURE RANGE

Operating temperature range 153 - 323 K

Storage temperature range 148 - 358 K

Performance parameters are measured with the device at a temperature of 173 K and, as a result, full performance is only guaranteed at this nominal operating temperature.

Operation or storage in humid conditions before the sensor taken to low ambient temperatures may give rise to ice on the surface, thereby causing irreversible damage.

Maximum rate of heating or cooling: 5 K/min.

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases, a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving sockets to be positively grounded

Evidence of incorrect handling will invalidate the warranty. All devices are provided with internal protection circuits to the gate electrodes (i.e. all CCD pins except SS, DD, RD, OD and OS) but not to the other pins.

The devices are assembled in a clean room environment. Teledyne e2v recommend that similar precautions are taken to avoid contaminating the active surface.

HIGH ENERGY RADIATION

Performance parameters will begin to change if the device is subject to ionising radiation. Characterisation data is held at Teledyne e2v with whom it is recommended that contact be made if devices are to be operated in any high radiation environment.

PART REFERENCES

Part number has the format of:

CCD290-66-g-xxx

g = cosmetic grade (0,1,2,5,6) xxx = device-specific part number

Contact Teledyne e2v for device specific variant part numbers.